
Chapter 3 

Uniform Regimes in Financial Practice 

3.1. Preliminary comments 

In this chapter we will consider financial laws widely applied in the practice of 
investment and discount. One of their common features is the uniformity in time, so 
that the calculation of accumulated and discounted values depends only on the 
duration of the operation. 

It is clear that the return of an operation is measured by a per period rate1. In a 
uniform law, if the rate remains constant for all given periods (we then talk about 
flat structure, in the field of all possible term structures of interest rate, concepts that 
we will consider later), it is clear that percentage returns remain unchanged 
wherever the operation is located in the time axis. This does not happen in financial 
markets, where to be at least approximately realistic, it would be necessary, in order 
to keep the simplicity of uniform law, to use the flat structure for a relatively short 
period. If this cannot be done because of the variability of returns with time, it is 
necessary to use the laws of two variables, characterized by per period rates 
changing with current time.  

We will consider three couples of uniform financial regimes2 that give rise to 
many infinite families of uniform laws of interest and discount identified by the 
return parameters.  

                                   
1 Let us recall that the per period rate measures the price for the availability of money in the 
given period. 
2 When we distinguish between accumulation and discount, instead of “regime” we can talk 
about “couple of regimes” of interest and discount. 



42     Mathematical Finance 

Because of uniformity we can use 0 as the initial time of the operation of 
investment (or the maturity of discounts), using small letters for duration (see 
section 2.5). 

3.1.1. Equivalent rates and intensities 

In any given financial regime of interest or discount, the problem of comparing 
rates or interest relative to different duration often arises. The following definitions 
hold. 

Two per period interest (or discount) rates for different durations are said to be 
equivalent if they give rise to the same percentage of annual return and then, 
according to previous definitions, if they follow from the same financial law of 
interest (or discount). 

Two intensities of interest (or discount) for different durations are said to be 
equivalent if they correspond to equivalent rates, and then if they follow from the 
same financial law of interest (or discount). 

Two per period rates, one of interest for the length t' and the other of discount for 
the length t", are said to be equivalent if they give rise to returns expressed by the 
annual interest and discount corresponding to conjugate laws. The equivalence for 
intensities follows from the equivalence for per period rates. 

Rates and intensities for the regimes, discussed in the following text, are to be 
considered “initial”. 

3.2. The regime of simple delayed interest (SDI) 

Continuing the considerations in section 1.1, we observe that the simplest way to 
calculate interest on a loan amount C is to consider the interest I proportional both to 
the principal C and the duration t = y-x (with no dependence on the initial time x) 
obtained as: 

I = C i t (3.1) 

Parameter i, which is usually given in percentage form r% = r/100, where  
r = 100 i, measures the interest for a unitary capital and a unitary time interval. 
Assuming from now on (unless otherwise stated) that the year is the unit measure for 
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time, i is called the annual interest rate (delayed). The accumulated amount  
M = C+I after time t is then given by  

M = C (1 + i t)  (3.2) 

Relations (3.1) and (3.2) for each choice of C, i, t, are characteristic of the 
regime of simple delayed interest (SDI), in which interests are paid, or booked, only 
at the end of the loan of length t. 

It follows from (3.1) and (3.2) that for accumulation laws in the SDI regime 

– the accumulation factor for the length t = y – x > 0 is  

ut = 1 + i t  (3.3) 

– the per period interest rate (1.3) for the length t is 

it = i t  (3.4) 

– the per period interest intensity for the length t is  

jt = it /t = i  (3.5) 

independent of the duration and equal to the annual interest rate3. 

Relation (3.4) gives the equivalent per period rates to a given annual rate i. More 
generally, for durations that are not alike and different from a year, there exists 
proportionality between equivalent per period rates and lengths. In symbols, if it’ 
and it” are the rates for the length t' and t", they are equivalent if  

it' /t' = it" /t" = I  4   (3.6) 

EXAMPLE 3.1.– If in the SDI regime the quarterly interest (t' = 1/3) is 5.25%, the 
equivalent semi-annual rate (t"= 1/2) is: 0.05253/2 = 0.07875, or 7.875%. They both 
give rise to the annual return i = 0.1575 which also measures the intensity. 

                                   
3 Such equality, which is only numeric and not dimensional, is due to the fact that the interest 
rate is measured annually. 
4 t',t") members in (3.6) are equal to the per period intensity and then the equivalence of 
rates gives the equivalence of the per period intensities between them and to i. “per period” 
refers to the period in which the return matures. 
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If the intensity changes during the lifetime of the loan, assuming the values 

i(1), …, i(n) for the length t1,...,tn, (where tss 1
n  =  t ), (3.2) can be generalized as: 

  M =  C (1 +  i (s)tss=1

n
) =  C (1 +  i  t)   (3.7) 

where i  is the arithmetic mean of intensities i(s) weighted with the length ts. 

EXAMPLE 3.2.– We invest €150,000 in the SDI regime obtaining for the first 3 
months the annual interest (= intensity) of 5%, for the next 4 months interest of 
5.5%, and for the next 6 months interest of 5.2%. The accumulated amount at the 
end is: 

M = 150,000.[1 + (0.05.3+0.055.4+0.052.6)/12] = €158,525 

Exercises on the SDI regime 

3.1 

Calculate in the SDI regime the interest earned for 6 months on a principal of 
€1,500,000 at the annual rate of 8.25%.  

A. Applying (3.1): I = €61,875 

3.2 

Calculate in the SDI regime (adopting bank year, with 360 days and each month 
having 30 days) the accumulated amount of a loan of €2,500,000 and of length 2 
years, 6 months and 25 days at the annual rate of 9.5%. 

A. Applying (3.2): M = €3,110,243 

3.3 

Calculate the accumulated amount as in Exercise 3.2, applying the varying 
interests: 9.5% in the 1st year, 10.5% in the 2nd year, 9% in the 3rd year.  

A. Applying (3.3):  

M = 2,500,000 (1 + 0.095 + 0.105 + 0.09 205/360) = €3,128,125 

The average annual interest for the operation is 0.25125.360/925 = 9.778%. 
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3.3. The regime of rational discount (RD) 

From the SDI laws we can deduce the conjugated discount laws that give rise to 
reciprocal factors. They fall within the rational discount (RD) regime. The 
discounted value C, payable in x instead of the amount M at maturity y>x, is 
obtained from (3.2), resulting in 

  
C =  M

1 + i t
  (3.8) 

Giving the annual interest rate i of the conjugate SDI law, we obtain the RD law 
for which: 

– the discount factor for the length t is  

vt = 1/(1 + i t) (3.9)  

– the per period discount rate for the length t is 

dt = 
i t

1 i t
  (3.10) 

– the per period discount intensity for the length t is  

t = dt /t = i

1 i t
  (3.11) 

If the annual discount rate d = i/(1+i) is given5, from which i = d/(1-d), the 
previous quantities (3.9), (3.10) and (3.11) are obtained as a function of d: 
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5 This law has a trivial interpretation: i is the interest paid at the end of the year on the unitary 
capital, while d is the discount or the interest paid at the beginning of the year. Then d is the 
discounted value of i, the relation is obtained from (3.10) posing t = 1. It is useful to make use 
of such arguments based on the financial equivalence’s principle.  
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t
 =  d

t
/ t =  

d 

1- d(1- t)
 (3.11') 

Equation (3.10') gives the per period discount rate for the length t equivalent to 
the annual discount rate d. 

EXAMPLE 3.3 

1) If in the RD regime the delayed interest i = 7.40%, using (3.10) we obtain the 
semi-annual, four-monthly, quarterly and monthly discount rates: 3.5680%, 
2.4073%, 1.8164% and 0.6129%. 

2) If in the RD regime the advance rate is d = 6.80%, using (3.10') we obtain the 
semi-annual, four-monthly, quarterly and monthly discount rates: 3.5197%, 
2.3743%, 1.7914% and 0.6043%. 

3) If in the RD regime the four-monthly discount rate is d1/3 = 2.15%, inverting 
(3.10) with t = 1/3 we obtain the equivalent annual rate i = 3.0.0215/0.9785 = 
0.065917. Then the equivalent semi-annual rate i1/2 is obtained through (3.10) and it 
is 3.1907%. 

The amount D of the discount on M and the discounted amount C as a function 
of d are given respectively by 

D = M dt = 
  

M d t
1- d(1- t)

 ; C = M vt = 
 

M (1- d)
1- d(1- t)

  (3.12) 

In Figure 3.1, for an SDI law, the graph of I = I(t) and M = M(t) are shown (see 
(3.1) and (3.2)) as a function of t. Figure 3.2 shows, for an RD law, the graph  
C = C(t). 

 

Figure 3.1. Simple delayed interest 
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Figure 3.2. Rational discount 

Comments 

All linear laws, including conjugated laws, are used in general for short time 
periods. For the SDI laws, by indicating as g the number of days in the financial 
operation, the interest can be written as  

I =  
C g

T/i
   (3.13) 

where T=360 if the “bank year” is used and T=365 if the “calendar year” is used. 
The numerator in (3.13) takes the name of “number” and the denominator that of 
“fixed dividend” because it depends only on the rate.  

(3.13) is useful for finding the interest on a current account ruled by the SDI law 
in a given period (bank accounts are typical), because in order to calculate the 
interest in the considered period it is enough to sum the numbers relative to the days 
between two changes and divide by the fixed dividend. 

Exercises on the RD regime 

3.4 

Calculate in the RD regime the discount to cash with a 3 month advance a credit 
of €30,000 at an annual interest rate of 6%. 

A. By applying (3.10) and (3.12) with i = 0.06, t = 0.25, the following is 
obtained 

dt = 0.015/1.015 = 0.014778 = 1.4778% 

D = M dt = €443.35 
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3.5 

Calculate in the SD regime the discounted amount at 31 March of an amount of 
€160,000 payable on 31 August, following the calendar year and applying an annual 
discount rate of 6%. 

A. By applying (3.12) with d = 0.06, t = 153/365 = 0.419178, M = 160,000, the 
following is obtained: 

C = (160,000.0.94)/[1-0.06(1-0.419178)] = €155,830.6. 

3.4. The regime of simple discount (SD) 

If in the choice of financial regime we consider the problem of discount and – 
with a symmetric argument that gave rise to the SDI laws – we want to find a regime 
that gives rise to proportionality between payment and terminal value and 
anticipation time, we obtain the simple discount (SD) regime. In the SD regime, the 
amount D of discount on a terminal value M for a length t is given by 

D = M d t   (3.14) 

Parameter d, which is usually given in percentage r%, where r = 100 d, has the 
meaning of discount for unitary capital and for a unitary time interval and is called 
the annual rate of discount. The discounted amount C = M-D at time x, 
corresponding to the amount M payable at maturity y = x+t > x, is given by 

C = M (1 – d t)  (3.15) 

From (3.14) and (3.15) it follows that, for a law in the SD regime, 

– the discount factor for length t of advance is  

vt = 1 - d t   (3.16)  

– the per period discount rate (1.4) for length t is 

dt = d.t   (3.17)  

– the per period discount intensity for length t is  

t = dt / t = d   (3.18) 
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independent of the length, and numerically equal to the given annual discount rate d. 

As in the SDI regime with (3.4) and (3.5), (3.17) gives the per period discount 
rate equivalent to the annual rate d. More generally, there exists proportionality 
between equivalent per period rate and length, and 

dt' / t' = dt" / t" = d  (3.19) 

results, so we have the independence of the discount intensity from length. 

EXAMPLE 3.4.– If in the SD regime the bimonthly rate (t' = 1/6) is 1.25%, the 
equivalent semi-annual rate (t"= 1/2) is: 0.0125.6/2 = 0.0375 = 3.75%. Both give the 
percentage of advance annual return d = 7.50%. 

Exercises on the SD regime 

3.6 

Let us assume that a bill of €3,500 has a deadline on 30 September of the year T. 
We ask for the discount at bank Z, in the SD regime at the annual rate of 7% with 
payment on 25 June of the same year. Not considering transaction costs, calculate 
the return. 

A. Because of (3.15) it is given by  

C = 3,500 (1 - 0.07 97

360
) = €3,433.99. 

3.7 

It has been agreed on the anticipation at 20 May of the amount of €68,000 with 
maturity at 30 September of the same year, in the SD regime (using the calendar 
year) and fixing the four-monthly equivalent rate of 2.65%. Calculate the amount of 
discount. 

A. The annual equivalent rate d is 0.0265.3 = 0.0795. Using (3.14): 

D = 68,000.0.0795 133

365
 = €1,969.86 
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3.5. The regime of simple advance interest (SAI) 

The interest law conjugated to the simple discount gives rise to the regime of 
simple advance interest (SAI), which is also called the regime of commercial 
interest.  

Using the annual advance interest rate d in an SAI law:  

– the accumulation factor for length t is 

ut = 1 / (1 - d t)   (3.20)  

i.e. inverse of the factor vt defined in (3.16); 

– the per period interest rate (delayed) for length t is6  

it = 
  

d t

1 -  d t
   (3.21) 

– the interest intensity for length t is  

jt = it /t = d

1 -  d t
   (3.22) 

Multiplying (3.20) for a capital C invested in x the accumulated amount is 
obtained 

M = C ut   (3.20')  

at time y = x+t > x.  
 

                                   
6 Equation (3.21) gives the per period interest rate equivalent to the advance annual rate d or 
to the delayed annual rate i = d/(1-d) of the conjugate law. 
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Figure 3.3. a) Simple discount; b) simple advance interest 

EXAMPLE 3.5 

1) In the SAI regime, given the advance rate d = 8.20%, the semi-annual, four-
monthly, quarterly, monthly, etc., interest rate can be found using (3.21); 4.2753%, 
2.8101%, 2.0929% and 0.6880% respectively are obtained. 

2) In the SAI regime, given the delayed rate i = 9.50%, the corresponding rate d 
is 0.095/1.095 = 0.086758 = 8.6758%, and applying (3.21) the semi-annual, four-
monthly, quarterly, monthly, etc., interest rate can be found; 4.5346%, 2.9781%, 
2.2170% and 0.7282% respectively are obtained. 

3) In the SAI regime, given the four-monthly interest rate i1/3 = 2.35%, inverting 
(3.21) with t = 1/3 the equivalent annual rate d = 3.0.0235/1.0235 = 0.068881 can be 
found. Then the equivalent semi-annual rate i1/2 can be found, using (3.21) to be 
3.5669%. 

Exercises on the SAI regime 

3.8 

Calculate the accumulated amount after 20 months of the investment of 
€120,000 in the SAI regime at the advance annual interest rate of 4.50%, and also 
the per period equivalent interest rate. 

A. By applying (3.20) and (3.20') the following is obtained 

M = 120,000/(1 - 0.045.20/12) = €129,730. 

The per period equivalent interest rate is calculated by (3.21) and the following 
is obtained:  

0.075/(1 - 0.075) = 8.1081%. 
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3.9 

It is known that an 8 month discount operation in the SD regime at the annual 
rate d = 6% gives a discounted amount C = €155,000. Calculate: 

– the capital at maturity; 

– the per period discount rate; 

– the per period interest rate in the conjugate law. 

A. Given that the conjugate law to the applied SD law is an SAI: 

– the capital at maturity is calculating using (3.20'):  

M = 155,000/(1 - 0.06.8/12) = €161,458; 

– the per period discount rate is 0.06.8/12 = 4%; 

– the per period interest rate in the conjugate law is 0.04/1.04 = 4.1667%. 

3.10 

Consider the same problem as in Exercise 3.9 but with: C = €155,000, d = 6% 
and t = 10.75 (= 10y+9m). 

A. The capital at maturity is M = €436,620, the per period discount rate is 
64.50% and the interest rate of the SAI law is 181.69%: note that the spread between 
the two rates increases. Note that the critical length threshold t = 1/d, such that the 
delayed interest and the accumulated amount diverge, is in this case 1/0.06 years=16 
years and 8 months. 

3.6. Comments on the SDI, RD, SD and SAI uniform regimes  

Each of the two couples of uniform financial regimes considered in sections 3.2 
and 3.3 and in sections 3.4 and 3.5 is made of a regime with factors which are linear 
functions of the length and another regime, which includes the conjugate laws, with 
factors which are a rational function of the length (their graph is an equilateral 
hyperbola). We can summarize this by saying that such regimes are made of uniform 
linear laws and their conjugate. 

Let us summarize further properties of and observations about such couples. 

3.6.1. Exchange factors (EF) 

Using the symbols in section 2.4 we indicate by g( ) the exchange factor (EF) for 
the length with sign (accumulation if >0, discount if <0) and we put t=| |. If the 
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corresponding laws are conjugate, (2.41) holds; then, , g( ) and g(- ) are 
reciprocal.  

If we consider a couple of SDI and RD conjugate laws, we have, with = t > 0: 

g( ) = 1+i  = 1+i t (SDI) ; g(- ) = 1/g( ) = 1/(1+i t) (RD) 
 
If we consider a couple of SD and SAI conjugate laws, we have, with = -t < 0: 

g( ) = 1+d  = 1-d t (SD) ; g(- ) = 1/g( ) = 1/(1- d t) (SAI) 

3.6.2. Corrective operations 

We notice, in the example of uniform financial laws considered here, that the 
operative role is similar to an “offsetting entry” that the conjugate laws have. 
Indeed, if an investment of C has been agreed with an SDI (or SAI) law for the 
length t, which gives rise to M, and to cancel such an investment, instead of an 
offsetting entry, we can restore the previous situation by applying to M the 
corresponding RD (or SD) factor.  

3.6.3. Initial averaged intensities and instantaneous intensity 

As already mentioned in footnote 3, values (3.5), (3.11), (3.18) and (3.22) are 
initial averaged intensities in the interval (0,t) for investment or anticipation. The 
instantaneous intensity7 in t (time from investment or time to maturity) has another 
meaning: it is obtained as a limit case of the continuing intensity defined in section 
2.3.  

Recalling that in the interest laws the instantaneous intensity are obtained from 
the logarithmic derivatives with respect to t of the exchange factors, the following 
expression for the instantaneous intensity in t can be easily deduced: 

a) SDI (rate i): t = i/(1 + it) decreasing with t 

  RD (rate i'): t = i'/(1 + i't) decreasing with t 

b) SAI (rate d): t = d/(1 - dt) increasing with t 

                                   
7 Summarizing the definition in Chapter 2, in the accumulation of an investment made in x=0 
the instantaneous intensity in y=t>0 is the limit of the per period intensity between y and 
y+ y, with y>0, while in the discount of capital with maturity in x=0 the instantaneous 
intensity at time y=-t<0 is the limit of the per period intensity between y and y+ y, with y<0. 
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  SD (rate d') t = d'/(1 - d't) increasing with t8 

If in a) i = i' or in b) d = d', the corresponding laws are conjugate to each other. 

3.6.4. Average length in the linear law and their conjugates 

By applying the considerations in sections 2.5.2 and 2.5.3, it is easily verified that: 

– in the SDI regime: the factor ut = 1+it is linear and then the average length ˆ t q  

is the arithmetic mean of the investment length th, weighted with the amounts Ch. It 

can be verified that the equality between the interests Chh 1
n ith , obtained with 

investments on times th,, (h=1,…,n), and the interests it Chh 1
n  obtained with only 

one investment for time t, can be obtained if and only if t = Chh 1
n th / Chh 1

n ; 

– in the SD regime: the factor vt = 1-dt is linear and then the average length ˆ t q  is 

the arithmetic mean of the discount length th, weighted with the amounts Mh; 

– in the SAI regime: ˆ t q  is an associative mean of the length th, such that 1-d ˆ t q  is 

the harmonic mean of the factors 1-dth, weighted with the amounts Ch; 

– in the RD regime: ˆ t q  is an associative mean of the length th, such that 1+ i ˆ t q  

is the harmonic mean of the factors 1+ith, weighted with the amounts Mh. 

3.6.5. Average rates in linear law and their conjugated laws 

Referring to the symbols introduced in section 2.5.4 and using the same 
arguments used for the average length, we can deduce that: 

– in the regime SDI: the average rate is the arithmetic mean of the rates ih with 
weights given by the used amounts Ch;  

– in the regime SD: the average rate is the arithmetic mean of the rates dh with 
weights given by the capital at maturity Mh; 

                                   
8 The formal coincidence, due to the analytic properties of the exchange factors, of formulae 
(3.11) and (3.22) of initial intensity in the RD and SAI regimes with the respective 
instantaneous intensity does not change the difference between initial intensity, which is a 
domain function, and instantaneous intensity, which is a point function.  
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– in their conjugate regime, the average rates are obtained as associative means 
given by harmonic mean of the exchange factors, i.e. 1+iht with weights Ch in the 
RD regime and 1-dht with weights Mh in the SAI regime. 

3.7. The compound interest regime  

3.7.1. Conversion of interests 

Let us reconsider the interest formation with an SDI law, which reflects a 
spontaneous propensity of the market due to the double proportionality of the 
interest with respect to the amount of the invested capital and also the length of 
investment, as (3.1) shows. However, we observe that if the interest is added to the 
principal at the end of the operation, then there is an asynchrony between the 
position of the lender, which gives his supply continuously (making it possible that 
other persons use his capital, depriving himself of its profitable use), and the 
borrower, who delays his payment until maturity. Such asynchrony, prejudicial for 
the lender, is greater the longer the time of investment. Thus, an investor can accept 
this regime, with equal return rates, only in the short-term (usually not longer than 
one year)9. 

Briefly, with the SDI regime the earned interest remains unprofitable until the 
end of the operation. Concerning SDI we can imagine the presence of two accounts: 
on the first account we book the principal C, giving interest with flow C i and then 
with amount C i t for every time of length t. However, such interest is booked on 
the second unprofitable account. At the end of the operation of length t the sums on 
both accounts, given by C and I = Cit, are withdrawn and transferred to the 
creditor10. It is then preferable to consider financial regimes that realize synchrony 
between the parties making the earned interest profitable. The transferring of earned 
interest between the unprofitable interest/account and the profitable 
principal/account, without having to wait until the capital is no longer being used, is 
called interest conversion. When these amounts are available for the creditor, he will 
be able to cash and use them elsewhere (and then the profitable capital in the 
original operation will remain unchanged) or he can add them to the capital (giving 

                                   
9 A rough solution to the damage connected with the asynchrony can be obtained easily with 
an increment of the interest rate. Furthermore, the fair increment would increase with the 
length. 
10 The SDI process is analogous to those of the following hydraulic scheme. A first tank 
holds a constant volume C of water; since time 0, by means of an open input tap some water 
flows into a second tank with a closed output tap; a gear is applied so that the inflow is 
proportional to C on the basis of the factor i, so we obtain a flow Ci. At time t the output tap is 
opened and the contents Cit of the second tank are poured into the first tank. All the water 
C(1+it) is soon withdrawn. 
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more interest) in the same operation11. In this second case, a movement of money is 
not needed and it is enough to credit the interest in the same profitable 
principal/account. 

It is obvious that intermediate conversions increase the amount, i.e. the lender 
credit, in t, as is shown below (considering, for simplicity, only one conversion). Let 
a principal C be invested at time 0 at annual rate i for the length t, with the 
assumption that the interest is formed using an SDI law but let the interest be 
converted at time t1 = t – t2 < t and keep it invested at the same rate until t. Adding 
to C the interest Cit1 earned at time t1, the amount with the added interest becomes 
M(t1) = C(1+it1) and the amount at term time t reaches the level: M(t) = 
C(1+it1)(1+it2) = C[(1+it) + i

2
t1t2]. It is thus proved that an intermediate 

conversion increases, at the same interest, the final amount: the simple interest for 
time t2 is added to the interest Cit1 earned in the time t1. 

The compound interest regime is characterized by the conversion of simple 
interests to profitable capital during the operation.  

Such a regime can be applied in two ways: 

1) the conversion is made with per period terms, or more generally in the 
discrete scheme; this is the method used in bank and commercial practice, with 
conversion at the end of the calendar year, calendar quarter, etc. We will then talk 
about discretely compound interest (DCI); 

2) the conversion is made continuously over time, only in this case there is a 
perfect synchrony between the parties in the contract. We will then talk about 
continuously compound interest (CCI).  

3.7.2. The regime of discretely compound interest (DCI) 

A general approach to the DCI laws leads to the following scheme: the use of 
principal C for the length t = t1+t2+ ... +tn (using a year as measure of time, unless 
otherwise stated), such that in the sub-period of length ts the intensities i(s), (s = 1, 
…, n) are used, and at the term of each sub-period the conversion is made. We then 
obtain the amount in t, given by 

  
M (t)  =   C (1+

s=1
n

 i (s)ts)   (3.23) 

                                   
11 The decision will depend on convenience and alternative uses and we will talk about this 
when discussing investment choices (see Chapter 4). 
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The product gives the accumulation factor from 0 to t in the DCI law12. 

Let us now consider some particular cases of discrete conversion that are 
relevant for banking and business application. 

Accumulation with annual conversion 

Assume in (3.23): ts = 1, s, then t=n  (  = set of natural numbers); i(s) = 
constant = i. A particular case of this model is for the conversion of interests at the 
end of the solar year. When we have only one payment C, made at the beginning of 
first year, the amount at the end of nth year is given by 

M(n) = C (l + i)
n 

 (3.24)  

EXAMPLE 3.6.– If €1,263,500 is banked at the beginning of 1998 in a bank account 
ruled by compound interests, annual conversion, at the annual rate of 4.35%, the 
terminal value at the 6th year (soon after the 6th conversion) is €1,631,285. 

Mixed accumulation with annual conversion 

With the hypothesis that the conversion is done on 31 December of each year, 
the amount M(t) for the use of a principal C for a length t, in between n+2 years (i.e. 
the final part f1 of the first year, other n years and the initial part f2 of the (n + 2)th 
year, then t = f1 + n + f2 < n+2) is given by  

M(t) = C (1 + i f1 ) (1 + i)n (1 + i f2)  (3.25)  

where the simple interest law is applied for a fraction of a year.  

To maintain a bank account in which banking and withdrawal are made, we can 
apply the direct method making the algebraic sum of the relative amounts calculated 
using (3.25) from the time of movement until the common last time t. However, the 
scalar method is more often used, in which the “numbers” are found between 
subsequent balances in each calendar year and the conversion of interest is made at 
the end of the year or when the bank account is closed.  

                                   
12 Recalling that, due to the conversions, parameters i(s) are intensities and not also annual 
return rates, investing in 0 the principal C, the amount obtained after the 1st conversion is: 
M(t1) = C(1+i(1)t1) and becomes profitable with intensity i(2); then at the 2nd conversion we 
obtain: M(t2) = C(1+i(1)t1)(1+i(2)t2). And then, at the nth conversion i.e. at time t, we obtain the 
result specified in (3.23). 
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EXAMPLE 3.7.– On 4 September 1996, Mr. John banks €23,500 on a bank account 
ruled by 4.65% per year, with mixed accumulation and annual conversion. The 
amount on 20 October 1999 is 

M = 23500 (1+0.0465.118/360) (1.0465)2 (1+0.0465.292/360) = €27,114. 

Accumulation with fractional conversion 

Let s: ts = 1/m in (3.23), where m-1 ; i(s) = constant = j(m). We then have 
the conversion m times per year, where m is called frequency of the conversion of 
interest in profitable capital, indicating j as a function of the conversion frequency. 
This is the intensity parameter, where K j(m) t is the interest for the profitable 
capital K for the length t<1/m. Parameter j(m) is sometimes called the nominal 
annual rate, convertible m times a year or, more briefly, the annual m/convertible 
rate. The fractional conversion is usually used with the frequencies m = 2, 3, 4, 6, 
12. 

EXAMPLE 3.8.– If m = 4 (= quarterly conversion) and j(4) = 8%/year, the interest 
on the capital K is 0.08.K. t for a period t  1/4 and for a quarter the interest is 
0.08.0.25 K = 0.02K. Using C for the capital at the beginning of the year, the amount 
at the end of the year (after 4 conversions) is 

C (1 + 0.02)4 = C.1.08243216 

where the effective annual return is measured by i = 8.243216% > 8%. 

In the fractional accumulation with frequency m (o m-fractionated), if i is the 
effective annual rate, then 

– the accumulation factor for the length 1/m is: u1/m = 1+i1/m; 

– the per period interest rate for the length 1/m is: 

i1/m = (1 + i)1/m – 1  (3.26) 

which is found from the equivalence relation between rates: (1+i1/m)
m

 = 1+i; 

– the per period interest intensity for the duration 1/m is: 

j(m) = m i1/m  (3.26') 

and relation i > j(m) can be deduced, if m-1 . 
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EXAMPLE 3.9.– We want to receive a return measure by the annual rate i = 6.45% 
with a prefixed use with monthly conversion. Then the monthly rate is i1/12 = 
0.522%, the corresponding intensity is j(12) = 6.266802%/year and the monthly 
accumulation factor is u1/12 = 1.00522. 

Mixed accumulation with conversion m times per year 

Using the assumption that the conversion is made at the end of each mth of the 
solar year, if f1< 1/m measures the interval between the investment and the first 
conversion and f2 < 1/m the interval between the last conversion and the end of the 
operation, by a generalization of (3.25) and using t = f1 + k/m + f2, we obtain: 

M(t) = C(1 + j(m) f1) (1 + j(m)/m)k (1 + j(m) f2)   (3.27) 

EXAMPLE 3.10.– On 4 September 1996, Mr. Tizio withdraws €23,500 from a bank 
account ruled by a nominal 4-convertible rate = 4.65%/year, with mixed 
accumulation quarterly converted. The debt on 20 October 1999 is 

M = 23500.(1+0.0465.26/360).(1+0.0465/4)12.(1+0.0465.20/360) = €27,157. 

Note: comparing this with the results in Example 3.7 using equal time and rate, the 
increase of the amount, which goes from €27,114 to €27,157 due to the more 
frequently interest conversion, will be noticed. 

Equivalent rate and intensity in the fractional conversion 

Two compound accumulation laws, the first with annual conversion at rate i and 
the second with m-fractional conversion at per period rate i1/m, are called equivalent 
if they give the same annual return. This happens if i and i1/m satisfy (3.26); in this 
case such rates are said to be equivalent.  

More generally, two compound accumulation laws, the first with m'-fractional 
conversion at rate i1/m' and the second with m"-fractional conversion at rate i1/m", are 
called, for the same reason, equivalent if 

(1 i1/ m ' )
m =  (1 i1/ m")

m" (3.28)  

and then i1/m' and i1/m" are called per period equivalent rates.  
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An analogous definition for the intensities can be given. Due to (3.26') and 
(3.28), if  

(1
j(m )

m 
)m =  (1

j(m")

m"
)m"  (3.29) 

is true, then j(m') and j(m") are equivalent intensities. 

Exercise 3.11 

Calculate the per period rates and intensities for the annual, semi-annual, four-
monthly, quarterly, bimonthly, monthly, weekly, daily conversion frequencies in the 
compound regime at the annual rate of 5.27% and the quarterly rate of 1.36%, using 
Excel. 

A. The given frequencies are: m = 1, 2, 3, 4, 6, 12, 52, 360. To obtain the 
solution we will use an Excel spreadsheet, which is particularly useful for 
calculating formulae with repeated structures (here varying m), using the “copy and 
paste” function. This is because in Excel the “copy” operation does not refer to the 
number in the cell but to the formula written in this cell, which works on the values 
written in other cells; besides, by “pasting” into another cell the formula is 
“translated”, i.e. it works on the cells corresponding by translation (unless the 
command $ is used). For example, if C6 includes a formula depending on the 
contents of the cells A9 and B10, by copying C6 and pasting in C9, the result is the 
value of the same formula applied on the contents of the cells A12 and B13: indeed, 
there is a three cell translation downwards. Consequently, changing data on the 
cells, all the results are instantaneously changed, which is very advantageous. This 
should be remembered for all exercises in this book that use Excel. 

Using an Excel spreadsheet, using such techniques we will find the solutions 
based on (3.26), (3.26') and (3.28), (3.29) starting from the given rates 5.27% 
(annual) and 1.36% (quarterly). The following table is obtained. 
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CALCULATION OF EQUIVALENT RATES AND INTENSITIES 

 
Equivalent to 
rate i = 5.27% 

 
Equivalent to 

rate i1/4 = 1.36% 

m i1/m j(m)  i1/m j(m) 

1 5.270% 0.05270  5.552% 0.05552 

2 2.601% 0.05202  2.738% 0.05477 

3 1.727% 0.05180  1.817% 0.05452 

4 1.292% 0.05169  1.360% 0.05440 

6 0.860% 0.05158  0.905% 0.05428 

12 0.429% 0.05147  0.451% 0.05416 

52 0.099% 0.05138  0.104% 0.05406 

360 0.014% 0.05136  0.015% 0.05404 

Table 3.1. Equivalent rates and intensities 

The Excel instructions are as follows. The first three rows are used for data and 
titles; D3: 0.0527; G3: 0.0136. The 4th row is empty. The 5th row has the column 
titles; from the 6th to 13th rows: 

– column A (frequency): given frequency; 

– column B: empty; 

– column C (equivalent rates): C6:= (1+$D$3)^(1/A6)-1; copy C6, then paste on 
C7 to C13; 

– column D (equivalent intensity) D6:= A6*C6; copy D6, then paste on D7 to 
D13; 

– column E: empty; 

– column F (equivalent rate): F6:= (1+$G$3)^(4/A6)-1; copy F6, then paste on 
F7 to F13; 

– column G (equivalent intensity): G6:= A6*F6; copy D6, then paste on G7 to 
G13. 



62     Mathematical Finance 

Note: rates are expressed in %; intensities are expressed in unitary form.  

Effects of frequency variations  

It is instructive to assess the effects on returns connected with a change of the 
conversion frequency, observing that: 

a) if the intensity j, i.e. the flow of interest accruing divided by the updated 
principal, is fixed (constant in the time), the annual rate i that measures the return of 
the unitary principal after one year of investment with m equally spaced conversions 
is given by 

  
i   f ( j,m) = (1

j

m
)m   1 (3.30) 

which is a sequence increasing with m; 

b) if the annual rate i, i.e. the return of a unitary principal after one year of 
investment with m equally spaced conversions, is fixed, the intensity j (constant in 
the time) is given by  

j g(i,m) m[(1 i)1 m  1]  (3.31) 

which is a sequence decreasing with m.  

EXAMPLE 3.11 

a) Let the intensity be j = 12% per year, i.e. it is established that within each 
interval between two subsequent conversions, the interest, which is still 
unprofitable, on the profitable sum S(t) is earned according to the flow 0.12.S(t); it is 
then the product of such flow and the considered length t. The interest earned after 
one year is an increasing function of the number m of conversions, each done after 
1/m of a year, and is given by the product Si, where i = f(j,m) is given, for the usual 
choices of m, by the values in the 3rd column of Table 3.2 below, obtained using 
(3.30). 

b) Let the delayed annual interest be i = 12%; it is then established that, whatever 
the number m of conversions in one year, the intensity j (constant in the time) is 
such to assure at the end of the year of investment and interest return equal to 
0.12.C, where C is the principal. With the increase of m the intensity j = g(i,m) 
decreases and assumes, for the usual choices of m, the values in the 4th column in 
Table 3.2, obtained using (3.31). 

The calculations are made on an Excel spreadsheet. 
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  Problem a) j = 0.12 Problem b) i = 0.12 

Conversion frequency M i, given j j, given i 

Annual 1 0.120000 0.120000 

Semi-annual 2 0.123600 0.116601 

Four-monthly 3 0.124864 0.115496 

Quarterly 4 0.125509 0.114949 

Bimonthly 6 0.126162 0.114406 

Monthly 12 0.126825 0.113866 

Weekly 52 0.127341 0.113452 

Daily 360 0.127474 0.113347 

Table 3.2. Correspondence between i and j 

The Excel instructions are as follows. The first three rows are used for data and 
titles; C3: 0.12; D3: 0.12. The 4th row is empty. The 5th row has column titles. From 
the 6th to 13th rows: 

– column A: conversion frequency; 

– column B (frequency): given frequency; 

– column C (equiv. annual rat.) C6:= (1+C$3/B6)^B6-1; copy C6, then paste on 
C7 to C13; 

– column D (equiv. intensity) D6:= B6*((1+D$3)^(1/B6)-1); copy D6, then paste 
on D7 to D13. 

3.7.3. The regime of continuously compound interest (CCI)  

We showed in section 3.7.1 that perfect synchrony of the supplies between the 
two contracting parties of a financial investment is obtained only with the CCI 
regime, which makes the accumulation with continuous conversion of interest that is 
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accrued during the use of the capital13. The mathematical calculations have the 
difficulty of considering infinitesimal times, and it is necessary to use infinitesimal 
calculus. We will keep the hypothesis of per period rates and intensities constant in 
time. 

We can consider two different ways to undertake the calculation: 

1) the first is to assume the continuous conversion as the limit case of the 
fractional conversion when the frequency diverges (i.e. m + ); 

2) the second, having general validity and also being suitable to describe the 
eventuality of time variable returns, consists of a direct approach to the formation of 
interest and their conversion, described with differential calculus. This is 
spontaneously related, in the case of constant in time returns, to the exponential 
regime described in section 2.6. We showed that the laws for such a regime, and 
only these, satisfy the properties of decomposability (and of strong decomposability, 
if we consider the couple of conjugate interest and discount laws) and uniformity in 
time. 

The first way brings us to consider the limit of (3.30) and (3.31) with diverging 
m. By the limit of (3.30), given the instantaneous intensity (constant over time) of 
return, denoted by , we obtain the equivalent annual rate i, which is also the upper 
bound for m = 1, of the intensities j(m) referred to the fractional conversion 
(according to the convexity of e t). By the limit of (3.31), given the annual rate i, we 
obtain the equivalent instantaneous intensity , lower bound for m  +  of the 
intensities j(m). Using formulae  

  

i lim
m

f ( ,m) lim
m

1
m

m

1  e 1

 lim
m

g(i,m) lim
m

(1 i)1/m 1

1/m
ln(1 i)

 (3.30') 

EXAMPLE 3.12.– By using the data in Table 3.2, given the constant intensity  
j = 0.12 and taking the limit m + , it is calculated that in continuous 
accumulation i = f(0.12,+ ) = 0.1274969 holds. Instead, using the effective annual 
rate i = 0.12, it is calculated that in continuous accumulation the instantaneous 
intensity  = g(0.12,+ ) = 0.1133287 holds. By comparing these results with the last 

                                   
13 In the hydraulic analogy of footnote 10, in continuous accumulation the second tank 
always has the input and output taps open, so that the “drops” of interest just formed go to the 
first tank and the second tank is almost always empty. 
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row of Table 3.2, it can be seen that the daily values (m = 360) are a good 
approximation of the continuous conversion’s values. 

An annual time horizon is not needed to define fractional and continuous 
accumulation. More generally, accumulating in the interval [0,T] using the intensity 
j, the amount in T corresponding to the principal C invested in 0 with equally spaced 
conversions in [0,T] is: 

  
M (T ) C(1 j

T

m
)m   (3.32) 

and taking the limit for m + , if the intensity j(i,m) (varying with m so that i 
remains unchanged) converges to a real value indicated with in CCI the following 
is obtained14

 

M(T) = lim
m

C(1 j(i,m)
T

m
)  m  = (3.33) 

  = C lim
m

(1
j(i,m)T

m
)

m

j( i,m )T

j( i,m )T

= C e j(i,+ ) T = C e T  

The second way formalizes the continuous conversion with constant rate. It 
follows from the following postulates:  

– the linearity, that is, the proportionality between interests flow and the 
principal that generates them; 

– the circularity, that is, the immediate and continuous transferring of earned 
interests to the profitable fund that generates them. 

                                   
14 This formulation of continuous accumulation, intended as a limit of the fractional 
accumulation, introduces the restriction of all equal subdivision intervals. Furthermore, in this 
limit we need the convergence of the intensity as a function of the fractioning. This last 
property exists in both cases examined in the table with varying m:  

– when in the different fractioning situations the annual rate i (or a given per period rate 
i1/m) is kept unchanged because in such a hypothesis the intensity, being decreasing, 
converges to = ln(1+i) = ln(1+i1/m)m}; 

– when the intensity does not change.  
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From these follows the equality between the amount’s increment between t and 
t+dt, approximated by dM(t)=M'(t)dt, and the infinitesimal interest M(t).dt. Then 
the simple differential equation (which is linear homogenous of the 1st order and 
with separable variables) is derived 

M'(t) = M(t)   (3.34)  

for which the particular solution, relative to the condition M(0) = C, is 

M(t) = C e t, t  [0,T]  15  (3.35) 

Equation (3.34) can be obtained with more details from the following 
considerations. Given the constant intensity  >0, investing C at time 0 and without 
any interest conversion, at time T the interest is C and if at that time the interest is 
added to the principal, the amount M(t) becomes C(1+ T). This SDI scheme satisfies 
linearity but not circularity, in the time interval [0,T], where circularity instead 
implies that in the infinitesimal interval dt between times t and t+dt in [0,T], the 
amount is increased by the earned interest, expressed by M(t)dt + o(dt), where 
o(dt) represents an infinitesimal error of order greater than dt. The following 
differential relation holds, t [0,T]  

M(t+dt) = M(t) + M(t)dt + o(dt)   (3.34') 

which gives the amount, originated by the principal C invested in t=0 and without 
any other financial flow, as a function of t that is continuous and differentiable t > 
0. Taking the limit for dt 0 and taking into account that lim o(dt)/dt = 0, (3.34) is 
obtained. 

It is obvious that such a financial mechanism, based on linearity and circularity, 
realizes the CCI regime with constant rate, that, taking into account (2.50), is 

                                   
15 Considering, for the sake of simplicity, the unitary capital invested at time 0, the accumulated 
amount in t without previous conversion (then only due to linearity) is: M1(t) = 1+ t, while with 
previous continuous conversion (then also due to circularity) it is  

  
M (t) e  t 1  t

2

2
t2

3

3!
t3 ...

n

n!
t n ... 1  t = M1(t)  

which shows that   M (t) M1(t)  and also M1(t) is the linear approximation in t=0 of M (t). 
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equivalent to the accumulation with the exponential regime16. A law of such a 
regime, and which is called an exponential law, applicable in the interval [0,T], 
given the annual rate i or the per period rate i1/m, is obtained from (3.35) using (see 
footnote 15) 

 = ln (1+i) = m ln (1+i1/m).   (3.31') 

If the intensity  is given, the following inverse formulae hold 

  i e 1      ;       i1/m e / m 1.   (3.31") 

Then, given the annual rate i, (3.35) can be written as 

M(t) = C (1+i)t, t  0   (3.35') 

It follows from (3.35) and (3.35') that for the accumulation laws in the CCI regime17: 

– the accumulation factor for the length t = y-x > 0 is 

ut = (1+i)t = e t   (3.36) 

– the per period interest rate for the length t is  

it = (1+i)t - 1 = e t – 1   (3.37) 

– the per period interest intensity for the length t is 

jt = it /t = [(1+i)t - 1]/ t = (e t - 1)/t   (3.38) 

Exercise 3.12 

Let us consider an investment of €4,550 in the CCI regime at the annual rate of 
6.78% for 5 months and 18 days. Calculate the accumulation factor, the per period 
rate and the corresponding intensity, the instantaneous intensity and the earned 
interest at time t.  

                                   
16 Let us consider here the exponential regime in the formation of interests for problems of 
accumulation with constant rate (or with “flat structure”). For the analogous discount regime 
see section 3.8.  
17 For these and other questions of financial mathematics, see S. Kellison (1991), Irwin; 
Poncet, Portait, Hayart (1993).  
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A. Adopting the bank year, this results in:  

 t = 5/12+18/360 = 0.46667; then:  

 ut = 1.06780.466667 = 1.031087; it = 1.0670.466667 - 1 = 0.031087; 

 jt = 0.031087/0.466667 = 0.066615/year;  

  = ln 1.0678 = 0.0656/year; It = 4550.0.031087 = €141.45.  

Exercise 3.13 

Let us consider the investment of the previous exercise with the same interest 
rate but for a length of 2 years, 3 months and 7 days. Calculate the accumulation 
factor, the per period rate, the corresponding intensity and the interest earned at time 
t. 

A. t = 2+3/12+7/360 = 2.269444 holds, and then: 

ut = 1.06782.269444 = 1.161023; it = 1.06782.269444 - 1 = 0.161023; 

jt = 1.161023/2.269444 = 0.070953; It = 4550.0.160123 = €732.65. 

The problem of equivalent rate and intensities in the CCI regime is resolved by a 
generalization of (3.28) and (3.29), which is useable only if we consider natural 
numbers >1, since now we have to assume t  +. Two per period rates for 
different periods t' and t" are equivalent if, expressed as annual rates in the 
aforementioned regime, they give the same return in terms of rate i or instantaneous 
intensity . Two per period intensities are equivalent if they correspond to 
equivalent rates. In formulae, to have equivalence, the rates it'  and it" must satisfy  

(1+it')1/t' = (1+it")1/t" (= 1+i = e )   (3.39) 

and the intensities jt' and jt" must satisfy  

(1+ jt' t')1/t' = (1+jt" t")1/t" (= 1+i = e )   (3.40) 

Exercise 3.14  

Let us consider an investment of €156,000 in the CCI regime for the length t' = 
(7m+24d) = 0.651620 year at the per period rate 0.0371. Calculate: 1) the 
corresponding intensity; 2) the rates and intensities equivalent to the previous ones, 
extending the investment for the length t" = (1y+4m+17d)=1.380556 year; 3) the 
interest earned after one year of investment. 

A. Using (3.39) and (3.40) the following is obtained: 

1) jt' = 0.0371/0.651620 = 0.056935/year; 
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2) it" = (1+it')t"/t' - 1 = 1.03712.118652 - 1 = 0.080235; the intensity j(t") follows 
from (3.40) or (3.38), which leads to 

jt" = [{1+t' jt'}t"/t'-1]/t" = [{1 + 0.056935.0.651620}2.118652-1]/1.380556  
= 0.058118; or jt" = it"/t" = 0.080235 / 1.380556 = 0.058118; 

3) by inverting (3.37) the equivalent annual rate is obtained i = 1.03711/0.651620 -
1 = 0.057496, and then the interest for one year of investment is 

I1 = 156,000.0.057496 = €8,969.38. 

3.8. The regime of continuously compound discount (CCD) 

We now consider the compound discount, only with regard to the continuously 
compound discount (CCD) (or exponential) regime which gives rise to a family of 
discount laws conjugated to those of CCI that can be specified by the instantaneous 
discount intensity  The function C(t) = discount value of M for effect of an 
anticipation of length t verifies the differential relation: 

C(t+dt) = C(t) - C(t)dt - o(dt)   (3.41) 

(where C(t)dt is the elementary discount between t and t+dt) under the initial 
condition C(0) = M. Then C(t) is expressed by 

C(t) = M e- t
   (3.42) 

Recalling (3.35), it is obvious that the law of exponential discount in (3.38) with 
parameter  is conjugated to the law of exponential accumulation with parameter  
if and only if . 

Working with a CCD law characterized by the intensity  on annual interval  
(t =1) or fraction of year (t =1/m), it follows from (3.42) that the annual discount 
factor v, the per period discount factor v1/m, the annual discount rate d and the per 
period discount rate d1/m for time 1/m are given respectively by: 

v = C (1)/M = e-  ; v1/m = C (1/m)/M = e- /m   
(3.43) 

d = {M - C (1)}/M  = 1 - v = 1 - e-    (3.44) 
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d1/m = {M - C(1/m)}/M  = 1 - e- /m  (3.45) 

resulting in the following equivalence relations on discount rates for different 
frequencies 

(1 - d1/m')
m' = (1 - d1/m)m = 1 – d   (3.46) 

In addition, the definition of per period discount intensity relative to the 
frequency m (also called nominal discount rate convertible m times a year) is 
expressed by 

(m) = m d1/m = m (1 - e- /m)   (3.47) 

 

Figure 3.4. Interest and discount exponential law 

EXAMPLE 3.13.– Considering the CCD law with  = 0.0689, we obtain for the 
factor and the rate of annual discount the values v = e-0.0689 = 0.93342 and d = 1-v = 
0.06658, while for the quarterly discount length (m=4) we obtain for the per period 
factor, the per period rate and the corresponding intensities the following values:  

v1/4 = e-0.0689/4 = 0.982923; d1/4 = 1 - v1/4 = 0.017077; (4) = 4 d1/4 = 0.06831. 

If m' = 6 (= bimonthly period), for (3.46) the equivalent discount rate is d1/6 = 1-
(1-d1/4)4/6 = 0.011418. 

Comparing (3.45) with (3.26), the rates i1/m and d1/m come from m-fractional and 
conjugated compound laws if the following relation holds: 

(1 + i1/m ) (1 - d1/m) = 1 (3.48) 
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and, taking into account (3.26') and (3.47), the intensities for conjugated laws satisfy 
the relation  

(1 + j(m)/m )(1 - (m)/m) = 1         (3.48') 

Exercise 3.15 

Using the CCD law with instantaneous intensity  = 0.0523, calculate the rates 
and the per period intensities, equivalent to each other, of such a law for the usual 
frequencies. Also calculate the rates and the per period intensities of interest for the 
same frequencies, based on the instantaneous intensity =  or = 0.0473  . 

A. Using Excel, the rates d1/m and the intensities m for changing m are 
obtained using (3.45) and (3.47). Furthermore, if = = 0.0523, the CCI law is 
conjugated to the CCD law; so the rates i1/m and the intensities j m  are obtained 
using (3.48) and (3.49). The following table is obtained. 
 

CALCULATION OF EQUIVALENT PER PERIOD RATES AND INTENSITIES 
with conjugated CCD and CCI laws 

  intensity  = intensity  =  0.0523  

m  D1/m (m)  i1/m J(m) 

1  5.096% 0.05096  5.369% 0.05369 

2  2.581% 0.05162  2.649% 0.05299 

3  1. 728% 0.05185  1.759% 0.05276 

4  1.299% 0.05196  1.316% 0.05264 

6  0.868% 0.05207  0.875% 0.05253 

12  0.435% 0.05219  0.437% 0.05241 

52  0.101% 0.05227  0.101% 0.05233 

360  0.015% 0.05230  0.015% 0.05230 

Table 3.3. Equivalent per period rates and intensities 

The Excel instructions are as follows. Rows 1, 2, 4, 5 are for data and titles; F4: 
0.0523. The 4th row is empty. From the 6th to 13th rows: 

– column A (frequency): insert the given frequencies; 

– column B: empty; 

– column C (per period disc. rate): C6:= 1-EXP(-$F$4/A6); 

– column D (per period disc. intensity): D6:= A6*C6; copy D6, then paste on D7 
to D13; 
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– column E: empty; 

– column F (per period interest rate): F6:= 1/(1-C6)-1; copy F6, then paste on F7 
to F13; 

– column G (per period interest intensity): G6:= A6*(1/(1-D6/A6)-1); copy G6, 
then paste on G7 to G13. 

The convergence of the per period intensities to = = 0.0523 is verified. 

If instead = 0.0473, the laws are not conjugated and the calculation of the 
interest rates and intensities proceeds autonomously on the basis of (3.31') and 
(3.38) with t = 1/m. We then obtain the following table. 

 

CALCULATION OF EQUIVALENT PER PERIOD RATES AND INTENSITIES 
with unconjugated CCD and CCI laws 

  intensity  = 0.0523  intensity  = 0.0473 

m  d.1/m Q(m)  i.1/m J(m) 

1  5.096% 0.05096  4.844% 0.04844 

2  2.581% 0.05162  2.393% 0.04786 

3  1.728% 0.05185  1.589% 0.04767 

4  1.299% 0.05196  1.190% 0.04758 

6  0.868% 0.05207  0.791% 0.04749 

12  0.435% 0.05219  0.395% 0.04739 

52  0.101% 0.05227  0.091% 0.04732 

360  0. 015% 0.05230  0.013% 0.04730 

Table 3.4. Equivalent per period rates and intensities 

The Excel instructions are as follows. Rows 1, 2, 4, 5 are for data and titles; D4: 
0.0523; G4: 0.0473; the 4th row is empty; from the 6th to 13th rows: 

– column A (frequency): insert the given frequencies; 

– column B: empty; 

– column C (per period disc. rate): C6:= 1-EXP(-$D$4/A6); 

– column D (per period disc. intensity): D6:= A6*C6; copy D6, then paste on D7 
to D13; 
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– column E: empty; 

– column F (per period interest rate): F6:= EXP($G$4/A6)-1; copy F6, then paste 
on F7 to F13; 

– column G (per period interest intensity): G6:= A6*F6; copy G6, then paste on 
G7 to G13. 

This verifies the convergence of the per period intensities to the respective 
instantaneous intensities with frequency divergence. 

In general, with diverging m, (3.47) converges to the instantaneous intensity . 
Indeed, using h = -1/m 

lim
m

(m) = lim
h 0

(e h-1)/h = (3.49)

Working with a CCD law whose instantaneous intensity is  on any discount 
length t >0 due to (3.42) the discount factor, the per period discount rate and the per 
period discount intensity for the length t are given respectively by 

vt = e- t   (3.50) 

dt = 1 - e- t   (3.51) 

t = dt / t = (1 - e- t )/t   (3.52)  

EXAMPLE 3.14.– Using the same discount law as in Example 3.13 and applying t = 
(2y+7m+21d) = 2.641667, the following values for (3.50), (3.51) and (3.52) are 
obtained: 

vt = 0.83359229; dt = 0.16640771; t = 0.06299345 

The comparison between (3.50) and (3.36) shows that if ln(1+i), ut and vt 
are reciprocal, where the corresponding CCI and CCD laws are conjugated. 
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3.9. Complements and exercises on compound regimes 

Complement 1: graphical interpretation 

Let us recall that the exponential functions differ from their reciprocal functions 
only by the sign of the exponent: 1/e  = e- = e (- ). Therefore, it can be concluded 
that the same function e  represents, depending on the sign of  compound 
accumulation or discount, if we consider the following durations: 

– in the first case a positive duration  > 0 between the beginning and the end of 
accumulation; 

– in the second case a negative duration proceeding backwards from the 
maturity, taken as origin, until time  < 0 where the discount is carried out. 

This enables us to represent in only one graph f(t)= e t, t, shown in Figure 3.5, 
the typical quantities of the exponential regime, choosing an intensity >0 which 
represents the interest intensity for the accumulation law and the discount intensity 
for the discounting law. 

time length

rates

 

Figure 3.5. Rates and intensities in the exponential law 

Interpretation of Figure 3.5 

Let us consider in Figure 3.5 the following typical points of the graph of the 
function f(t) = e t identified by the Cartesian coordinates on the plain Otf: 

A = (1,e ); B = (1/m,e m); Q = (0,1); C = (-1/m,e- m); D = (-1,e- ) 

where m is the conversion frequency. The points B', C', D' are intersections with t=1 
of the secants of the exponential f = e t respectively for the fixed point Q and the 
varying points B, C, D; furthermore, point Q' is the intersection in t=1 of the tangent 
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of the curve in Q (= limit line of the secants). The point U, R, S, V on the horizontal 
f =1 have the same abscissa as A, B, C, D. 

Let us observe that because of the proportionality between catheti of similar 
triangles QRB and QUB': UB' = RB/ QR = slope of the secant QB. Using a similar 
argument: UC' = SC/ QS = slope of the secant QC. Because QU=1, then UQ' = 
slope of the line QQ' tangent in Q to e t as well. 

Because e = 1+i, e m = 1+i1/, e- m = 1-d1/m, e- = 1-d and also j m  = m.i1/m, 
m  = m.d1/m, the following graphical interpretation can be obtained: 

– ordinate of D = v = discount factor for one year; 

– ordinate of C = v1/m = discount factor for 1/m of one year; 

– ordinate of B = u1/m = accumulation factor for 1/m of one year; 

– ordinate of A = u = accumulation factor for one year; 

– VD  = UD' = d = (1) = annual discount rate = discount intensity on one year; 

– RB = d1/m = discount rate per period for 1/m of one year; 

– SC = i1/m = interest rate per period for 1/m of one year; 

– UA  = i = j(1) = annual interest rate = interest intensity on one year base; 

– UB' = j m  = interest intensity per period on 1/m of one year; 

– UQ' =  = instantaneous interest intensity; 

– UC' = m  = discount intensity per period on 1/m of one year. 

It is clear that rates and intensities relative to different periods, taken from the 
same function e t, are equivalent. 

Using the same graph as in Figure 3.5, the relations between the fundamental 
quantities u, v, i, d (which, referring to one year, are valid for all uniform regimes 
considered in this chapter) can be considered, as well as the relations between the 
fundamental quantities and the instantaneous intensity . Such relations are 
summarized in the following table, where each quantity given in the 1st column is 
expressed as a function of the quantities given in the 1st row. 
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v

i d

1 d
e 1

d u 1

u

1 v i

1 i

d 1 e

ln u ln v ln (1 i) ln (1 d)  

(3.53)

 

Table 3.5. Transformation formulae between rates or intensities 

Complement 2: average length and average rate in the compound regime  

By applying the same considerations as in sections 2.5.3 and 2.5.4 to the 
compound regime, it can be easily verified that: 

– using a CCI law and the accumulation factor ut = (1+i)t, the average length t̂   
(equal to the average term if the investment starts at 0) is given by the exponential 
mean with base (1+i) of the length th of the investment on the principal Ch. Then:  

1 i
ˆ t Ch 1 i

h 1

n

Chh 1

n

th

 (3.54) 

In the same way, using a CCD law and the discount factor vt = (1+i)-t, the 
average length t̂  is given by the exponential mean with base (1+i)-1 of the length th 
of the discount on the terminal amount Mh. Then: 

1 i
ˆ t Mh 1 i

h 1

n

Mhh 1

n

th

 (3.55) 
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– using a CCI law, the average rate î  relative to the investment of principal Ch 
for the same length t made with rate ih is the mean of powers with exponent t 
defined by 

1

1

1
ˆ1

tn
t h hh

n

hh

C i
i

C
  (3.56) 

In the same way, using a CCD law, the average rate î  relative to the discount 
on terminal value Mh for the same length t made at rate ih is the mean of powers 
with exponent -t defined by 

1

1

1
ˆ1

tn
t h hh

n

hh

M i
i

M
           (3.57) 

Complement 3: plurality of accounts and problems of averaging 

Let us consider the following application which implies an averaging problem. A 
company has to operate financially through a plurality of accounts, all ruled by a 
compound regime, which is decomposable, but with different rates. Let uh be the 
annual accumulation factor on the principal Ch > 0 invested at time 0 in the hth 
account (h = 1, ..., n). 

We are interested in valuing the characteristics of this accumulation regime 
connected to the total financial management of the n account, considering only the 
effect of such initial investments. So the accumulation factor for the 1st year is 
m(0,1) = Chuhh / Chh = ˆ u  = weighted arithmetic mean of the single factors (= 

first moment of the distribution {uh,Ch}); for two years of consecutive investment 

the accumulation factor is: m(0,2) = Chuh
2

h / Chh = mean of squared uh (= 

second moment of the distribution {uh,Ch}). 

The decomposability valid on each account is maintained at a global level as 
long as, supposing for example an interruption after one year, further accumulation 
for the 2nd year of the obtained amounts Chuh is made h with the same factor uh 
valid in the 1st year. The following is obtained indeed: 
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2( ) (0, 2)
(1,2)

(0,1)

h h h h hh h

h h h hh h

C u u C u m
m

mC u C u
     (3.58) 

However, it can be observed that: 

– the values in (3.58) are given by the anti-harmonic mean of the factors uh, 
which is not associative18; 

– the total amount = Chuhh  at time 1 of the principal Chh  can be obtained 

by also applying the mean annual rate û to each account, but if the rate û is also 
applied to each account in the 2nd year, after the interruption, we would obtain a 
lower total amount and the global process would not be separable. The result of such 
a hypothesis is that: 

1 = m(0,2) / m(0,1) = 2 ˆ/h h hh h
C u u C  

2 = m(1,2) = Chuhh  ˆ u / Chuhh
ˆ u  

Putting 3 = h h hh h
C u C  > 0, we obtain 

( 1 - 2) 3 = ChCk (uh uk )2
h k

 > 0 

and then 1 > 2. Thus, the statement is proved.  

The problem is more complicated if some of the amounts are credits and some 
are debits, without the possibility of compensation. 

Such simple observations should make the financial operator consider the 
delicacy of such problems and the attention needed in choices when averaged values 
are used. 

Exercises on equivalent rates and intensities  

It is convenient to stress that the consideration of a rate per period for 1/m of a 
year does not have meaning in annual conversion; it only has meaning in m-
fractional conversion or m'-fractional, with m' multiple of m, or in an exponential 
                                   
18 Generalizing this conclusion, we can observe that a feature of the compound regime is the 
fact that the continuing annual accumulation factor for the kth year is the anti-harmonic mean 

of order k given by Chuh
h

h / C huh
h 1

h ; see: Caliri (1981). 
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regime (m + ). In the latter case the interest rate can be considered for any period 
t, expressed by e t-1. 

Exercise 3.16 

Firm Y receives from Bank X a short-term loan with 7.60% nominal annual rate 
with quarterly conversion and uses it in an operation with monthly income. 
Calculate the minimum monthly rate of return necessary to assure a positive spread 
of 2% on the cost rate in terms of effective annual rates. 

A. The parameter 0.076 = nominal annual rate 4-convertible = j(4), is an 
intensity, referred to the quarterly conversion. It corresponds to effective annual rate 
i = (1+j(4))4-1 = 0.078194. Therefore, the minimum annual rate of return is: i' = 
0.098194, to which corresponds the monthly rate (1+i')1/12 - 1 = 0.007836 = 
0.7836%. 

Exercise 3.17 

For the loan of the principal C = €250,000, there will be delayed bimonthly 
interest payments of €2,900, until the time of repayment in one transaction. 

Calculate the amount of per period equivalent interest payments: 

a) in the case of monthly advance payments; 

b) in the case of semi-annual delayed payments; 

c) in the case of quarterly advance payments. 

A. Having established the final repayment of the total loan, the installments paid 
by the debtor are pure interest. Furthermore, the equivalent installments have to be 
calculated using the same DCI law with the monthly conversion (monthly because 
12 is the least common multiple of the frequencies considered here). 

So, because of the data, the accumulation law used here gives rise to a value for 
the bimonthly interest rate equal to  

i1/6 = 2,900/250,000 = 0.0116 = 1.16% 

Recalling (3.28), (3.46) and (3.48): 

a) 
0.5

1/12 1/6
1/12 0.5

1/12 1/6

(1 ) 1
0.005750  

1 (1 )

i i
d

i i
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therefore the equivalent advance monthly installment is: C d1/12 = €1,437. 

b) i1/2 = (1 + i1/6)3 - 1 = 0.035205 

therefore the equivalent delayed semi-annual installment is: C i1/2 = €8,801. 

c) 
1.5

1/4 1/6
1/4 1.5

1/4 1/6

(1 ) 1
0.017151  

1 (1 )

i i
d

i i
 

therefore the equivalent advance quarterly installment is: C d1/4= €4,288. 

Exercise 3.18 

1) For an investment of €10,000 in compound regime at the annual effective rate 
of 5%, let us compare the amount after 5 years and 7 months in the three following 
options: 

a) with CCI law; 

b) with mixed law with quarterly conversion; 

c) with mixed law with annual conversion. 

For b) and c) use the assumption that the investment is made at one prefixed time 
of conversion (for example on 1 January). 

A. In case a), apply (3.35'), use C = 10,000; i = 0.05; t = 5+7/12 = 5.583333; 
then:  

Ma = 10,000.(1.05)5.583333 = €13,131.27. 

In case b), apply (3.27) with f1 = 0; f2 = 1/12; m = 4; k = 22; j(4) = 4 (1.101/4 - 1) 
= 0.040989; C = 10,000; then:  

Mb = 10,000.(1+0.040989/4)22 .(1+0.040989.0.083333) = €13,131.50. 

In case c), apply (3.25) with f1 = 0; n = 5; f2 = 7/12; C = 10,000; then:  

Mc = 10,000.(1.05)5.(1+0.05.0.583333) = €13,135.06. 

The amounts are in increasing order, given that they follow from the same 
effective rates. In addition, Mb is very close to Ma. 
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2) Make the comparison for the amounts made in 1 but for a length of 5 years. 

A. As will be shown in section 3.10, for integer length the three amounts are the 
same. For 5 years this gives: Ma = Mb = Mc = 12762.82. 

3) Make the comparison as in 1, but calculating for 5 years and 7 months with a 
common intensity j = 0.05 for any frequency of conversion. 

A. In such a case, introducing j both in the compound law for integer year and in 
the linear law for fractions of a year, we obtain: 

Ma = 10,000 e0.055·583333 = €13,220.27 

Mb = 10,000 (1+0.05/4)22 (1+0.05.0.083333) = €13,197.64 

Mc = 10,000 (1+0.05)5 (1+0.05.0.583333) = €13,135.06 

The value Mc coincides with that in 1 because numerically i = j(1). The amounts 
are now in decreasing order with the decreasing number of conversions (Ma > Mc 
because e  >1+ t). 

4) Make the comparison as in 1), but for 5 years as in 2). 

A. Obviously the equality between the amounts is lost and then:  

Ma = €12,840.25; Mb = €12,820.37; Mc = €13,762.82. 

Exercise 3.19 

Consider the same problem as in Exercise 3.18, 1), using the same data, but 
removing the assumption that the investment starts at the conversion dates, but 
instead starts 12 days in advance. 

A. Using the bank year (= 12 months of 30 days each), results in: 

– case a), no changes because the exponential law depends only on the total 
length, which has not changed; therefore, Ma = €13,131.27; 

– cases b) and c) concern mixed law, then not a uniform law, and the result 
changes.  

In case b), using in (3.27): f1 = 0.03333 = (12 d); k = 22; f2 = 0.05 (= 18 d); j(4) = 
0.049089; C = €10,000, the following is obtained: 

Mb =10,000 (1+1.049089.0.03333).(1+0.049089/4)22 (1+0.049086.0.05) = 
€13,131.55. 



82     Mathematical Finance 

In case c), putting in (3.25): f1 = 0.033333; f2 = 7/12 - 12/360 = 0.55; n = 5; i = 
0.05; C = 10,000, the following is obtained  

Mc = 10,000 (1+1.05.0.03333).(1+0.05)5 .(1+0.05.0.55) = €13,135.65. 

If with the law assumed in case b), used in banks on current accounts, the 
fractions f1 and f2 are calculated relating the effective numbers of day to the bank 
year, i.e. 360, and can assume values greater than 1/4 (so that from 1 July to 29 
September inclusive, there are 91 days, resulting in 91/360 = 0.252778>1/4). 

Exercise 3.20 

In Exercise 3.19 we verified that, with the same interest and length, in mixed 
accumulation the result changes according to the placement of the investment 
interval with respect to the conversion interval. Calculate the values that, using the 
same data, maximize the amount. 

A. Considering for the sake of simplicity case c), we have to work on variables f1 
and f2 such that f1+f2 = t-n = constant = H and maintaining the number n+2 of 
conversions. Using f1 = x, f2 = H-x, with the data of Exercise 3.17 it is necessary to 
maximize the accumulation factor 

g(x) = M(t)/C = (1 + 0.05x).1.055.[1 + 0.05(H-x)]; 

its graph is a concave downward parabola, thus having only one maximum point 
where the first derivative is zero. It is g'(x) = 0 for x = H/2, i.e. when f1 = f2. 

In conclusion, if the length and frequency (annual, but this also holds for the 
fractional case, as it is easy to verify) are given, it is convenient for the creditor that 
the interval of investment is positioned symmetrically with respect to the conversion 
intervals. 

EXAMPLE 3.15.– Given an investment for 3 years and 6 months between 2005 and 
2009 at an annual rate of 5.50%, with conversion at the end of the calendar year, 
taking into account that the beginning cannot be before 1 July 2005 and the term 
cannot be after 3 June 2009, we obtain the maximum accumulation factor, equal to 
1.206755, when the investment begins on 1 October 2005 and ends on 31 March 
2009. Indicating by x the number of months in 2005 and by y = 6-x the number of 
months in 2009, by varying x with the respect of the given constraints, we obtain the 
following results which gives the order of magnitude of the variations.  
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Investment intervals x y Accumulation factor g(x) 

01/07/05 – 31/12/08 6 0 1.206533 

01/08/05 – 31/01/09 5 1 1.206656 

01/09/05 – 28/02/09 4 2 1.206730 

01/10/05 – 31/03/09 3 3 1.206755 

01/11/05 – 30/04/09 2 4 1.206730 

01/12/05 – 30/05/09 1 5 1.206656 

01/01/06 – 30/06/09 0 6 1.206533 

Table 3.6. Comparison among accumulation factors 

3.10. Comparison of laws of different regimes 

After collecting the results of previous section we can make a comparison 
between the amounts obtainable with different uniform accumulation regimes 
already considered or between the present values connected with different uniform 
discount regimes. 

We will consider in this section: 

a) in accumulation, the comparison among simple, delayed or advance, and 
continuously compound interest laws; 

b) in discount, the comparison among rational, simple and continuously 
compound discount laws. 

The result of such a comparison depends on the functional form of the exchange 
factors but also on the return parameters (rates or intensities) used for the single 
laws.  

When referring to the different accumulation regimes, if we only consider a 
comparison in the assumption of equal i, i.e. among: 

– an SDI law with annual rate i; 

– a CCI law with the same annual rate i; 

– an SAI law with annual rate d = i/(1+i);  
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we can conclude straight away that: 

1) the three SDI, CCI and SAI laws give rise to the same return of interest after 
one year of investment, i.e. the indifference length is 1; 

2) indicating here with  the preference among laws 

(SDI) (CCI) (SAI), if t < 1, 

(SAI) (CCI) (SDI), if t > 1. 

Regarding comparison among discount regimes, it is enough to observe that the 
RD, CCD and SD regimes give rise to conjugated laws, respectively, to SDI, CCI 
and SAI. Then it is enough to consider the reciprocal factors and repeat all 
reasoning, to conclude, when comparing the following:  

– an RD law with annual rate i; 

– a CCD law with the same annual rate; 

– an SD law with annual rate d = i/(1+i);  

that 

1) the three RD, CCD and SD laws give rise to the same discount return after one 
year of anticipation, i.e. the indifference length is 1; 

2) the preference among laws, indicated here by f , is 

(SD) (CCD) (RD), if t < 1, 

(RD) (CCD) (SD), if t > 1.  

Graphical interpretation 

Figure 3.6 shows the comparison among interest laws: (SDI)  line (a), (CCI)  
line (b), (SAI)  line (c), when the delayed interest rates coincide in the different 
law and the indifferent length is 1. The comparison among discount conjugate law 
(RD) line(a'), (CCD) line(b'), (SD) line(c'), with the same conditions and 
indifferent length, is also shown. 
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Figure 3.6. Comparisons among interest and discount laws  

Let us now solve the problem of comparing the various regimes two by two, 
when different rates are applied to the laws of accumulation or discount. In this way 
we can also find the indifference lengths which depend on the couples of the chosen 
rates. 

With reference to interest laws, the following results are obtained. 

A1) Comparison between SDI and CCI laws 

Let i0 be the annual rate of an SDI law and i the annual effective rates for a CCI 
law. With reference to the accumulation factors, the principal and the amount being 
proportional, the returns coincide in both laws if the length t satisfies the relation 

1 + i0t = (l + i)
t 

 (3.59) 

We will not consider the solution t = 0, because we are interested only in a 
positive solution t': 

– if i0 >  = ln(1+i), such a solution exists and is unique, given the upward 
concavity of (1+i)

t
. The calculation of indifference length t' must be done 

numerically. If i and i0 satisfy (3.59), 1+i0t > (l+i)
t
 if t<t' holds, while 1+i0t < (l+i)

t 

if t>t'. Therefore, the compound law is preferable for the investor only for a length 
greater than the indifference length, which is  

t' = 1/m if i0 = j(m); t' = 1 if i0 = i. 
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– if i0  , there is no indifference length and the compound law is always 
preferable. 

Exercise 3.21  

Given the (SDI) law with an annual rate of i0 = 0.061 and the (CCI) law with an 
annual rate of i = 0.062, calculate the indifference length using the methods 
described in this section. 

A. Given the annual rate i0 = 0.061 > ln(1+i) = 0.060154, there exists the 
indifference length t' > 0. We have t' = 1 if i0 = i; but being i0 < i, t' < 1 follows. 
Finally: 0 < t' <1 and the compound factor prevails if t > t'.  

Indicating with (t) = (1+i)t - (1+i0t) the spread between the factors (where by 
definition (t')=0) is (1) = i-i0 and with the given rates: (1) = 0.001. Let us 
calculate in the interval (0,1) a time t such that (t) < 0. With decreasing t we have 
for example: (0,4) = -0.000047. Proceeding initially with the dichotomic method 
(see section 4.5.3) between t=1 and t=0.40, we obtain: (0.70) = 0.000307; (0.55) = 
0.000088; etc. The convergence is slow. 

Let us proceed with the secant method (see section 4.5.4), with upper bound t = 
0.55 fixed and increasing lower bound from t = 0.40.  

1st step: linear interpolation between t = 0.40 and t = 0.55: 

 
t 0.40

0.55 0.40

0 (0.40)

(0.55) (0.40)

47

88 47
0.348148  

then t = 0.40 + 0.15. 0.348148 = 0.452222; (t) = -0.000009. 

2nd step: linear interpolation between t = 0.452222 and t = 0.55: 

 
t 0.452222

0.55 0.452222

0 (0.452222)

(0.55) (0.452222)

9

88 9
0.092784   

then t = 0.452222 + 0.097778. 0,092784 = 0.461294; (t) = -0.000002. 

3rd step: linear interpolation between t = 0.461294 and t = 0.55: 

 
t 0.461294

0.55 0.461294

0 (0.461294)

(0.55) (0.461294)

2

88 2
0.022222   

then t = 0.461294 + 0.088706. 0.022222 = 0.463265; (t) = -0.000000035. 
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Let us stop the iterative process, because time 0.463265 = (5m+17d) is a good 
estimation (approximated by defect) of the indifference length t', implying a spread 

 of almost zero. 

A2) Comparison between SDI and SAI laws  

Let i be the annual rate of an SDI law and d the annual discount rate of an SAI 
law. We have coincidence of returns (for length t < 1/d) if 

1 + it = (1 - d t)
-1   (3.60)  

and we have the only positive solution t' = (i0-d)/i0d if and only if i0>d. In particular 
t' = 1 if i0 = d/(1-d).  

Due to the sign of concavity (l - dt)
-1

, the SDI law is convenient for the investor 
if t<t', but the SAI law is convenient if t>t'. 

EXAMPLE 3.16.– Comparing an SDI law with an annual rate i0 = 4.70% with an 
SAI law with an annual advance rate d = 4.30%, the indifference length is given by:  

t' = (0.047-0.043)/(0.047.0.043) = 1.979218 = 1y+11m+23d. 

Using instead the corresponding rate d = 0.047/1.047 = 4.489% we obtain t' = 1. 

A3) Comparison between SAI and CCI laws  

Let d be the annual discount rate of a SAI law and i the effective annual rate of a 
CCI law. The returns are the same if the length satisfies the relation 

(1 - d t)-1 = (1+i)t   ,  t < 1/d (3.61) 

For this comparison the calculation of indifference length t' must be performed 
numerically. We have a solution t'>0 (which can be shown to be unique) to the 
problem of equivalent length if and only if d<  In such a case, if t<t' the CCI law 
is convenient for the investor; if t>t', then the SAI laws are convenient. If instead  
d > , the SAI law is always convenient for the investor.  

 

                                   
19 This is because the curves (1-dt)-1 and (1+i)t are both convex and have right derivatives in 
t=0 equal respectively to d and . 
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Exercise 3.22 

Given the law (CCI) at the annual rate i = 0.062 and the law (SAI) at the annual 
delayed rate d = 0.059, calculate the indifference length using the method described 
in section 4.5. 

A. Given that d = 0.059 < = ln(1+i) = 0.060154, there exists the indifference 
length t' > 0. To calculate this, we proceed as in Exercise 3.21, where the CCI and SDI 
laws are compared. Furthermore, with length t=1 the SAI law is convenient, because 
the following is obtained for the accumulation factors: 1/(1-d) = 1.062699>1.062000 = 
1+i. Then: 0<t'<1 and the simple advance factor prevails if t > t'.  

Indicating with (t) = (1-d t)-1-(1+i)t the spread between the factors (where by 
definition (t')=0), with the given rates we obtain: (1) = 0.000699. In addition, 
(0.5) = -0.000137. Starting with the dichotomic method between t=1 and t=0.50, we 

obtain: (0.750) = 0.000150; (0.625) = -0.000025; ..... 

To speed up the convergence, we proceed with the secant method, using the 
upper bound t = 0.750 fixed and the increasing lower bound from t = 0.625. 

1st step: linear interpolation between t = 0.625 and t = 0.750: 

 
t 0.625

0.750 0.625

0 (0.625)

(0.750) (0.625)

25

150 25
0.142857   

from which t = 0.625 + 0.125. 0.142857 = 0.642857; t) = -0.000004. 

2nd step: linear interpolation between t = 0.642857 and t = 0.750: 

 
t 0.642857

0.750 0.642857

0 (0.642857)

(0.750) (0.642857)

4

150 4
0,025974   

from which: t = 0.642857 + 0.107143. 0.025974 = 0.645640; (t) = -0.000001. 

We stop here: time 0.645640 = (7m+22d) is a good estimation (approximated by 
default) of the indifference length t', because the spread is close to zero.  

With reference to discount laws, for the problem of 

B1) comparison between RD and CCD laws; 

B2) comparison between RD and SD laws; 

B3) comparison between SD and CCD laws. 
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we obtain the same indifference length t' valid for the interest conjugate laws, as it is 
simple to prove by observing that the equations giving the solutions concern the 
reciprocals of the terms which appear in equations (3.59), (3.60), (3.61) and then 
coincide with the aforementioned relations.  

Furthermore, for length t  t', going from interest laws to their conjugated 
discount laws, the preference relations are inverted20. 

                                   
20 In fact the discount laws give rise to factors reciprocal to those of the interest laws 
conjugated with the previous discount laws. Therefore, the inequalities and the sign of 
concavities of the corresponding graphs are inverted. In addition, considering discount, in the 
right derivatives in t=0 only the sign changes, i.e. there are -i0, -d, -d. This is in agreement 
with the generally valid property, that the differentiable functions f(x) and their reciprocal 
function have in the intersection points opposite derivatives. Indeed, if f(x0)= 1/f(x0), we 

obtain: [f(x0)]2 = 1 and then 1/f(x)x=x0 = –f ’(x0). 


